Guideline for the management of ingested foreign bodies

This is one of a series of statements discussing the utilization of gastrointestinal endoscopy in common clinical situations. The Standards of Practice Committee of the American Society for Gastrointestinal Endoscopy prepared this text. In preparing this guideline, a MEDLINE literature search was performed, and additional references were obtained from the bibliographies of the identified articles and from recommendations of expert consultants. When little or no data exist from well-designed prospective trials, emphasis is given to results from large series and reports from recognized experts.

Guidelines for appropriate utilization of endoscopy are based on a critical review of the available data and expert consensus. Further controlled clinical studies are needed to clarify aspects of this statement, and revision may be necessary as new data appear. Clinical consideration may justify a course of action at variance to these recommendations.

This guideline is intended to aid the endoscopist in the management of patients with possible foreign object ingestion and/or food bolus impaction. The original guideline was published in 1995. A literature search was performed on the PubMed database of the National Center for Biotechnology Information. References chosen for review were English-language citations from the gastroenterology, pediatric, emergency medicine, otolaryngology, general surgical, and radiological literature. Because little or no data exist from well-designed prospective trials, emphasis was given to results from large series and reports from recognized experts.

Foreign object ingestion and food bolus impaction occur commonly. The majority of foreign bodies that reach the GI tract, true foreign objects and food bolus impactions, will pass spontaneously. However, 10% to 20% will require nonoperative intervention, and 1% or less will require surgery. Although deaths caused by foreign body ingestion have rarely been reported, mortality rates have been extremely low, with recent large series reporting no deaths among 852 adults and one death among 2206 children.

The majority of foreign body ingestions occur in the pediatric population with a peak incidence between ages 6 months and 6 years. In adults, true foreign object ingestion occurs more commonly among those with psychiatric disorders, mental retardation, or impairment caused by alcohol, and those seeking some secondary gain with access to a medical facility. Ingestion of multiple foreign objects and repeated episodes are not uncommon. Edentulous adults are also at greater risk for foreign body ingestion, including of their dental prosthesis. Patients presenting with food bolus impaction commonly have underlying esophageal pathology directly responsible for the impaction.

Impaction, perforation, or obstruction most often occurs at areas of acute angulation or physiologic narrowing. The level of the cricopharyngeus muscle and the ileocecal valve are the most clinically significant. Patients with prior GI tract surgery or congenital gut malformations are at increased risk for obstruction or perforation. Once through the esophagus, the majority of ingested foreign bodies pass through the alimentary tract uneventfully, including sharp-pointed objects. However, the risk of perforation is higher when sharp or pointed metallic objects, animal or fish bones, bread-bag clips, medication blister-packs, or toothpicks are ingested.

DIAGNOSIS

Older children and fully conscious, communicative adults may be able to identify the material swallowed and point to the location of discomfort. Localization of the level of impaction, however, is often not reliable. In many instances the ingestion goes unrecognized or unreported until the onset of symptoms, which may be remote from the time of ingestion. Young children, the mentally impaired, or the psychologically deranged may present with choking, refusal to eat, vomiting, drooling, wheezing, bloodstained saliva, or respiratory distress.

Swelling, erythema, tenderness, or crepitus in the neck region may be present with oropharyngeal or proximal esophageal perforation. The abdomen should be examined for evidence of peritonitis or small bowel obstruction. These conditions will require surgical intervention and consultation should not be delayed for endoscopy. Ventilation, airway compromise, and the risk of aspiration should be assessed.

Biplane radiographs identify most true foreign objects, steak bones, and free mediastinal or peri-
tissue formation can occur. When the duration of the esophageal foreign body is not known, the endoscopy is best performed with the patient under general anesthesia, and surgical consultation is suggested.

Rigid and flexible esophagoscopy are both safe and effective methods of removing various esophageal foreign bodies. Rigid esophagoscopy requires general anesthesia. Flexible endoscopy is performed with the patient under conscious sedation or general anesthesia depending on the patient’s age, ability to cooperate, and the type and number of objects to be retrieved. Rigid esophagoscopy or direct laryngoscopy may be attempted for impacted sharp objects at the level of the hypopharynx and cricopharyngeus muscle. Flexible endoscopy is preferred in most other circumstances because it is successful in the majority of pediatric patients and allows a thorough examination of the esophagus, stomach, and duodenum.

Equipment

Standard and therapeutic endoscopes are preferred, although successful management of swallowed foreign objects with a transnasally inserted bronchoscope has been described. Equipment that should be readily available includes rat tooth and alligator forceps, polypectomy snare, polyp grasper, Dormier basket, retrieval net, overtubes of esophageal and gastric lengths, and a foreign body protector hood. Practice at grasping a similar object with the available instruments outside the patient is beneficial. Use of an overtube offers airway protection during retrieval, allows for multiple passes of the endoscope during removal of multiple foreign bodies or a food impaction, and protects the esophageal mucosa from lacerations during retrieval of sharp objects. In children, the overtube is less commonly used because of the risk of esophageal injury during the overtube insertion. The foreign body protector hood is preferable in protecting the esophagus during removal of sharp or pointed objects. Elective endotracheal intubation is an alternative means of assuring airway protection.

Food bolus impaction

The most common esophageal foreign body in adults is impacted meat or other food bolus. Patients who are in severe distress or unable to swallow oral secretions require immediate intervention. If the patient is not comfortable, not at risk for aspiration, and able to handle his or her secretions, then intervention need not be emergent and can be postponed to a reasonably convenient time because food impactions will often pass spontaneously. However, endoscopic intervention should not be delayed beyond 24 hours from presentation because the risk of complication may increase.

The initial endoscopic examination should verify and locate the site of the impaction. The food bolus can usually be removed en bloc or in a piecemeal fashion with the instruments described above. As
previously stated, an overtube may facilitate multiple passes of the endoscope, protect the esophageal mucosa, and minimize the risk of aspiration. Once reduced in size, the bolus can often be passed under endoscopic visualization and direction. When the endoscope, with insufflation and distention of the esophageal lumen, can be steered around the food bolus and into the stomach, the endoscope can then be pulled back and used to gently push the bolus into the stomach. The high incidence of underlying esophageal pathology in this setting increases the risk associated with the practice of blindly pushing an impacted food bolus with the endoscope or a dilator. A friction-fit adaptor fitted to the end of the endoscope has been used as a direct-vision suction device to remove the impacted food.

A proteolytic enzyme, like papain, should not be used because it has been associated with hypernatremia, erosion, and esophageal perforation. The administration of glucagon 1.0 mg intravenously, in an attempt to relax the esophagus, is generally safe and may promote spontaneous passage of an impacted food bolus while definitive endoscopic therapy is being coordinated. However, its use should not delay definitive endoscopic removal.

Blunt objects

Coins can be removed easily with a foreign body forceps (“rat-tooth,” “alligator”), snare, or a retrieval net. Smooth, round objects are best secured with a retrieval net or basket, although in a prospective in vivo study the retrieval net was superior. Objects that cannot be easily grasped in the esophagus may be advanced into the stomach, if endoscopic visualization is afforded, where they may be more easily grasped. Nonendoscopic removal of blunt radiopaque esophageal foreign objects with a Foley catheter under fluoroscopic guidance has been reported to be successful with a low complication rate, but provides no control of the object as it is being removed, provides no airway protection, and does not allow for assessment of underlying esophageal pathology.

Conservative outpatient management is indicated in almost all instances in which the foreign body has entered the stomach, although in some institutions endoscopic removal is the standard practice. Most objects are passed within 4 to 6 days, although some may take as long as 4 weeks. While awaiting spontaneous passage of a foreign body, patients are usually instructed to continue a regular diet and observe their stools for the ingested object. In the absence of symptoms, weekly radiographs are sufficient to follow the progression of small blunt objects not observed to pass spontaneously. In adults, rounded objects greater than 2.5 cm in diameter are less likely to pass the pylorus. Objects that fail to leave the stomach within 3 to 4 weeks should be removed endoscopically. Once the object is past the stomach, surgical removal should be considered for objects that remain in the same location for more than 1 week. Symptoms of fever, vomiting, or abdominal pain are indications for immediate surgical evaluation.

Long objects

Objects longer than 6 to 10 cm, such as toothbrushes and spoons, will have difficulty passing the duodenal sweep and should be removed. The use of a longer (>45 cm) overtube that extends beyond the gastroesophageal junction is beneficial. The object can be grasped with a snare or basket and maneuvered into the overtube. The entire apparatus, foreign body, overtube, and endoscope can then be withdrawn in one motion, avoiding losing grasp of the object in the overtube itself.

Sharp-pointed objects

A myriad of ingested sharp-pointed objects have been described. The ones most commonly associated with complications are chicken and fish bones, straightened paperclips, toothpicks, needles, bread-bag clips, and dental bridgework. Patients suspected of swallowing sharp-pointed objects must be evaluated to define the location of the object. Because many sharp-pointed objects are not readily visible radiographically, endoscopy should follow a negative radiologic examination. Sharp-pointed objects lodged in the esophagus represent a medical emergency. Direct laryngoscopy is an alternative for objects lodged at or above the cricopharyngeus. Otherwise, rigid or flexible endoscopy may be used when this is unsuccessful or for objects lodged below this area. Although the majority of sharp-pointed objects that enter the stomach will pass through the remaining GI tract without incident, the risk of a complication caused by a sharp-pointed object is as high as 35%. Therefore, a sharp-pointed object that has passed into the stomach or proximal duodenum should be retrieved endoscopically if it can be accomplished safely. Otherwise sharp-pointed objects may be followed with daily radiographs to document their passage, and surgical intervention should be considered for objects that fail to progress for 3 consecutive days. Patients should be instructed to immediately report abdominal pain, vomiting, persistent temperature elevations, hematemesis, or melena. Endoscopic retrieval of sharp objects is accomplished with use of retrieval forceps or polypectomy snare. The risk of mucosal injury
during sharp object retrieval can be minimized by orienting the object with point trailing during extraction, using an overtube, or fitting a protector hood to the end of the endoscope.19,60

Disk batteries

Special considerations apply with small disk or button battery ingestion.61,62 Liquefaction necrosis and perforation can occur rapidly when a disk battery is lodged in the esophagus. After radiographic documentation, batteries lodged in the esophagus should be immediately recovered because of possible fatal complications. A stone retrieval basket or retrieval net is most often successful. An alternative method uses a through-the-scope balloon under direct vision. The balloon is passed through the working channel of the endoscope, distal to the foreign body. The balloon is inflated and withdrawn to engage the object with point trailing during sharp object retrieval can be minimized by orienting the object with point trailing during extraction, using an overtube, or fitting a protector hood to the end of the endoscope.19,60

The balloon, battery, and endoscope are then removed as a unit.1 The use of an overtube or endotracheal tube is essential to protect the airway during the performance of this procedure.

If the battery cannot be directly retrieved from the esophagus, it should be pushed into the stomach where it can often be successfully retrieved with a basket. However, once in the stomach, most disk batteries pass without consequence. Batteries that have passed beyond the esophagus need not be retrieved unless the patient manifests signs or symptoms of injury to the GI tract, or a large-diameter battery (greater than 20 mm in diameter) remains in the stomach beyond 48 hours as determined by a repeat radiograph.61 Once past the duodenal sweep, 85% are passed within 72 hours.63 A radiograph every 3 to 4 days is adequate. Emetics have not been beneficial in the management of disk battery ingestions and have led to retrograde migration of gastric batteries into the esophagus.61 Cathartics and acid suppression have no proven role in battery ingestion although GI lavage may expedite passage.64

Narcotic packets

Internal concealment of narcotics wrapped in plastic or contained in latex condoms, referred to as “body packing,” is seen in regions of high drug traffic.65 The packets can usually be seen radiographically and the use of CT scanning may be helpful, although false-negative scans have been reported.34,35 Rupture and leakage of the contents can be fatal. No attempt should be made to remove drug packets endoscopically because of the risk of rupture. Surgical intervention is indicated for failure of the packets to progress, signs of intestinal obstruction, or suspected rupture.

REFERENCES

24. Yamada T, Sato H, Seki M, Kitagawa S, Nakagawa M,

29. Yamamoto M. A chopstick is removed after 60 years in the duodenum. Gastrointest Endosc 1985;31:51.

51. Holsinger JW, Furson RL, Sealy WC. Esophageal perforation following meat impaction and papain ingestion. JAMA 1968;204:188.

55. Holsinger JW, Furson RL, Sealy WC. Esophageal perforation following meat impaction and papain ingestion. JAMA 1968;204:188.

